

Unit III

What do you mean by minimum spanning tree?List and explain the different methods of obtaining minimum spanning trees. Find the MST for the given graph using Kruskal's Algorithm.

- 6. (a) What is topological sorting? Explain with an example.5
 - (b) Enlist the algorithm for obtaining a DFS traversal. Traverse the following graph using DFS:

No. of Printed Pages: 0 Roll No.

18D3

B. Tech. EXAMINATION, June 2023

(Fourth Semester)

(C-Scheme) (Main & Re-appear)

(CSE)

CSE206C

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit.

Unit I

- 1. (a) Enlist the characteristics of a good algorithm. 5
 - (b) What do you understand by asymptotic notations? Explain all the types of asymptotic notations.10
- 2. (a) Illustrate the Master method for solving recurrence relations. Also solve the following recurrences by using Master method:

 5

(i)
$$T(n) = 2T\left(\frac{n}{2}\right) + n^3$$

(ii)
$$T(n) = T\left(\frac{9n}{10}\right) + n$$

(b) Solve the following recurrences by using recursion tree method: 10

(i)
$$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{8}\right)$$

(ii)
$$T(n) = 3T\left(\frac{n}{4}\right) + cn^2$$

Unit II

- (a) Compare and contrast dynamic programming and greedy programming strategies.
 - (b) Compare and contrast Branch and Bound method and backtracking method.5
 - (c) What do you understand by Heuristic characteristics ? Also write their application domains.
- 4. Given that the knapsack capacity is 5 kg. Solve the following 0/1 Knapsack problem by using the following techniques:
 - (i) dynamic strategy
 - (ii) branch and bound strategy:

Item : 1 2 3 4

Weight (kg): 2 1 3 2

Value(\$) : 12 10 20 15

Unit IV

7.	(a)	What	are	NP-co	mplete	classes	of
		algorith	ıms ?	Explain	n.		5
	(b)	What are approximation			algorithms	?	
		Illustra	te	the	signi	ficance	of
		approximation algorithms.					10

- 8. (a) What are NP-hard classes of Problems ?Explain.5
 - (b) State and prove Cook's theorem. 10

Unit IV

- 7. (a) What are NP-complete classes of algorithms? Explain. 5
 - (b) What are approximation algorithms?

 Illustrate the significance of approximation algorithms. 10
- 8. (a) What are NP-hard classes of Problems?
 Explain. 5
 - (b) State and prove Cook's theorem. 10

5